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Description of pulse sequences

“… quadrature detection in F1 is achieved by States-

TPPI incrementation of phase 1”

= 30 G/cm
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Description of pulse sequences

A full description of a pulse sequence does not only include pulses, 

gradients and delays, but also the phases, the phase cycle, the gradient 

strength and sometimes also the coherence transfer pathways.

The phase cycle - often combined with the action of gradients - makes 

sure that we do not only get the signals that we want with highest 

possible intensity but that we also suppress all other types of 

magnetization. And quadrature detection makes sure that we can obtain 

optimal resolution in the indirect dimensions.

To fully understand how a pulse sequence works we thus have to 

understand how phase cycling works, what effect gradients have and 

how we can place the center of the spectrum in the middle of the 

signals with out confusing higher and lower frequencies.



Delays, z-rotations and

coherence order
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Delays, z-rotation and coherence order

During delays several interactions between spins and the magnetic field 

as well as other spins are active. One of the most important “delays” is 

the acquisition time that occurs in even the simplest 1D experiment.

One example for an interaction with the external field is the evolution 

of chemical shift, a first example for z-rotation.
IzIx Ix cos  + Iy sin 

sin t

cos t

x

y

t

IzIy Iy cos  - Ix sin 

IzIz Iz

While z is unaffected, x is converted 

into y, y into –x and so forth.
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Delays, z-rotation and coherence order

In Cartesian coordinates this is a rotation in the x,y-plane. Since the 

phases of pulses are usually defined using Cartesian coordinates their use 

as product operator basis can be quite useful.

The rotation can also be viewed as a rotation in a complex plane, where it is 

a change of phase over time. This is sometimes called the “spherical 

representation” and might seem abstract at first but will help us later when 

dealing with gradients, pulse phases, coherence  and coherence order.

The operators I+ and I- are also called “raising” and “lowering” operators.

Ix = 1/2 (I+ + I-)

Iy = 1/2i (I+ - I-)

I+ = Ix + iIy

I- = Ix - iIy
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Delays, z-rotation and coherence order

How do I+ and I- evolve under a z-rotation (like chemical shift) ? 

I+ Ix cos  + Iy sin  + iIy cos  - iIx sin 

= 1/2 (I+ + I-) cos  - i/2 (I+ - I-) sin 

+ 1/2 (I+ - I-) cos  - i/2 (I+ + I-) sin 

= I+ cos  - i I+ sin 

= I+ exp (-i

1/i = -i

I+ = Ix + iIy I- = Ix - iIy Ix = 1/2(I+ + I-) Iy = 1/2i(I+ - I-) 

Iz
Ix iIy

Ix Iy

iIy iIxi/i = 1
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Delays, z-rotation and coherence order

How do I+ and I- evolve under a z-rotation (like chemical shift) ? 

I- Ix cos  + Iy sin  - iIy cos  + iIx sin 

= 1/2 (I+ + I-) cos  - i/2 (I+ - I-) sin 

- 1/2 (I+ - I-) cos  + i/2 (I+ + I-) sin 

= I- cos  + i I- sin 

= I- exp (+i

Iz

This is quite simple, the 

operators merely 

acquire a phase. They 

have opposite sense of 

rotation 
I+ and I- as well as Ix and Iy are also called

single quantum coherences (SQC) ! 

I+ = Ix + iIy I- = Ix - iIy Ix = 1/2(I+ + I-) Iy = 1/2i(I+ - I-) 
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Delays, z-rotation and coherence order

Products of I+ and I- are, of course, also possible if several spins are involved

Ix = I+ + I-
Iz I+ exp (-i) + I- exp (+i) 

To distinguish those two will be the task of quadrature detection!!

I1+I2- I1+exp(-i1) I2- exp(+i2) = I1+I2- exp(-i[1-2])
Iz

I1-I2+ I1-exp(+i1) I2+ exp(-i2) = I1-I2+ exp(+i[1-2])
Iz

I1+I2+ I1+exp(-i1) I2+ exp(-i2) = I1+I2+ exp(-i[1+2])
Iz

I1-I2- I1-exp(+i1) I2- exp(+i2) = I1-I2- exp(+i[1+2])
Iz

}
}

ZQC

DQC

We have also seen that Ix contains two counter-rotating components
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Delays, z-rotation and coherence order

The spherical representation is connected to the concept of coherences 

and coherence order. The problem with coherence is that it is difficult to 

find an appropriate physical picture for it. So let us say it is connected with 

transverse magnetization.

This magnetization is manipulated in NMR experiments using gradients and 

pulse phases and it turns out that the effects of those are much easier to 

calculate using a spherical representation then using Cartesian coordinates. 

Cp Cp exp(-ip)
Iz 

The order p of a coherence C is defined according to its behavior 

under a z-rotation:
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Delays, z-rotation and coherence order
We can now calculate the coherence order in the spherical as well as 

the Cartesian representation

I- I- exp (+i) =>  coherence order p = -1
Iz

I-I+ I+I- =>  coherence order p = 0
Iz

I+I+ I+I+ exp(-i2) =>  coherence order p = +2
Iz

Cartesian operators represent mixtures of coherence order

Ix = I+ + I- =>  coherence order p = -1 and p = +1 

I1xI2x = ½ (I1+ + I1-) * ½(I2+ + I2-) = ¼ [I1+I2+ + I1+I2- + I1-I2+ + I1-I2-]

=>  coherence order p = +2         0         0         -2 

It is easy to see that the maximum coherence order will depend on 

the number of interaction spins



Quadrature detection in 1D
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Quadrature Detection in 1D

The proton signal on a spectrometer operating at 600.13 MHz has a 

typical frequency range from 600.1305 to 600.1295 MHz (± 5000 Hz).

In order for the signal to be processed on a computer it needs to be 

digitized using an Analog-Digital-Converter (ADC).

These frequencies are too high even for modern ADCs and therefore 

the reference frequency of 600.13 MHz is subtracted, to keep the 

frequency range as small as possible this is the center of the range.  



Peter Schmieder
FMP

14/114

Phase cycling, Gradients and Quadrature-Detection
G-NMR-School 2020

Quadrature Detection in 1D

This leads to the problem that one has to deal with positive and 

negative frequencies that are not easily distinguished:

e.g. cos (x) = cos (-x)

Fourier-
Transform 
of cosine

only

3 Signals:
1200 Hz
-300 Hz
-1800 Hz
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Quadrature Detection in 1D

The solution is to obtain a 

second signal at an angel of 

90° to distinguish the sense 

of rotation, i.e. the sign.

To do this with a second coil, 

however, is impractical

3 Signals:
1200 Hz
-300 Hz
-1800 Hz

Fourier-
Transform 
of cosine
and sine
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Quadrature Detection in 1D

It is therefore done by phase-shifting the reference signal

ADC

ADC

mixer low-pass-filter

signal
from
probe

90°
phase
shift

receiver
reference

real part
of FID

imaginary
part of

FID
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Quadrature Detection in 1D

sC(t) = A cost cosreft = A [cos(+ ref)t + cos(- ref)t]  

To calculate how that works lets assume we have a cosine modulated 

signal, the receiver reference is a cosine as well, the two are 

multiplied in the mixer (      )

That means that after the low pass filter (     ) the following signal 

is digitized: A cos0t with 0 = (- ref)

The shifted receiver signal is a sine: cos ( + /2) = - sin 

The sign of the frequency 0 depends on wether > ref or < ref

sS(t) = A cost -sinreft = A [-sin(+ ref)t + sin(- ref)t]  

That means that after the low pass filter (     ) the following signal 

is digitized: A sin0t with 0 = (- ref)
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Quadrature Detection in 1D
The two components are combined to give of a complex number, in 

addition we have to keep in mind the decay of the signal:

s(t) = [sC(t) + i * sS(t)] * exp (-t/T2) = exp (i0t) exp (-t/T2)

=
1

(1/T2) + i( – 0)
S() =   s(t) exp (-it) dt

0



∫

Then we do an FT and obtain the frequency domain, the result 

consists also of complex numbers

= A() + i D()

A() =
(1/T2)

(1/T2)2 + ( – 0)2

D() = -
( – 0)

(1/T2)2 + ( – 0)2
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Quadrature Detection in 1D

Here is the graphical representation again, it shows the same idea:

while two rotations in opposite directions can not be distinguish using one 

channel, using two perpendicular channels they can
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Quadrature Detection in 1D

2t

The digitization before 

processing imposes some 

restraints:

The digital FT (DFT) requires 

equidistant points.

The Nyquist theorem demands 

that we have three time points 

per period, thus the highest 

frequency we can detect is  

fn = 1/(2t)
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Quadrature Detection in 1D
Since we can distinguish the signs of the signals, the spectral width can be 

twice that: if we have sw = 6000 Hz, the sampling rate is t = 166.66 usec.

In the direct acquisition of a 1D higher frequencies will be removed by filters.

Here the two frequencies are the borders of the spectrum (+/- 3000 Hz)
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Quadrature Detection in 1D

Frequencies that are not at the border of the spectral width look more normal

(2000 Hz / -1000 Hz)
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Quadrature Detection in 1D
The solution presented so far made two ADCs necessary. A “cheaper” solution 

is the so called “Redfield-trick”. Here the sampling rate is doubled and a single 

channel receiver is shifted proportional to the time. Thereby one sense of 

rotation is slowed down, the other sped up and the signals can be distinguished

(6000 Hz / 0 Hz)
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Quadrature Detection in 1D
The sense of rotation is now the same for all resonances. The receiver is 

moving by 360° in 332 msec, which adds a frequency of 3000 Hz to every 

frequency. 2000 Hz become 5000 Hz and -1000 Hz become 2000 Hz. 

(5000 Hz / 2000 Hz)

We could also move the receiver counter-clockwise and would get
-1000 Hz from 2000 Hz and -4000 Hz from -1000 Hz !!
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Quadrature Detection in 1D

Fourier-
Transform 
of cosine

only

3 Signals:
1200 Hz
-300 Hz
-1800 Hz

All frequencies are shifted by 

-3000 Hz:

-1800 Hz, -3300 Hz, -4800 Hz

They are still doubled by the 

FT, which now yields a 

spectrum with twice the SW.

We only observe the right side 

of the spectrum and move the 

center back to – 3000 Hz.  

-1800 Hz

-300 Hz

1200 Hz -1200 Hz

300 Hz

1800 Hz

4800 Hz

3300 Hz

1800 Hz -1800 = 1200 Hz

-3300 = -300 Hz

-4800 = -1800 Hz

Fourier-Transform of
cosine only after the

Redfield trick
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Quadrature Detection in 1D

Now we have seen that we can distinguish two counter-rotating 

components, what does that mean in terms of coherences ?

Another calculation shows that the sign discrimination we just saw is 

equivalent to the selection of one coherence order by the receiver.

We replace the linearly polarized magnetization by two counter-rotating 

signals:

Ix ½[I+ exp(-it) + I- exp(it)]

The same applies to the receiver reference signals:

cos (reft) = exp (ireft) + exp (-ireft)

cos (reft + /2) = i exp (ireft) – i exp (-ireft)
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Quadrature Detection in 1D
Signal and reference are multiplied in the mixer to yield the real 

part of our complex signal

½[ I+ exp(-it) + I- exp(it)] * [exp (ireft) + exp (-ireft)]

= ½{I+ [exp(-it) exp (ireft) + exp(-it) exp (-ireft)]

+ I- [exp(it) exp (ireft) + exp(it) exp (-ireft)]}

= ½{I+ [exp(-i(-ref)t) + exp(-i(+ref)t)]

+ I- [exp(+i(+ref)t) + exp(+i(-ref)t)]}

The low-pass filter leaves only two terms

½{I+ exp(-it) + I- exp(+it)} = Re

cos (reft) = exp (ireft) + exp (-ireft)
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Quadrature Detection in 1D

The shifted reference results in slightly modified terms

½[I+ exp(-it) + I- exp(it)] * i *[exp (ireft) - exp (-ireft)]

= ½i * {I+ [exp(-it) exp (ireft) + exp(-it) exp (-ireft)]

- I- [exp(it) exp (ireft) - exp(it) exp (-ireft)]}

= ½i * {I+ [exp(-i(-ref)t) + exp(-i(+ref)t)]

- I- [exp(+i(+ref)t) + exp(+i(-ref)t)]}

The low-pass filter again leaves only two terms

½ i * {I+ exp(-it) - I- exp(+it)} = Im

cos (reft + /2) = i exp (ireft) – i exp (-ireft)
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Quadrature Detection in 1D

Both channels are combined to form a complex number

S = Re + i * Im

½[I+ exp(-it) + I- exp(+it)]

+ i * i * ½[I+ exp(-it) - I- exp(+it)]

= I- exp(+it)

which corresponds to coherence order (-1) !

90
rec

we detect 

coherence order 

(-1) 

Note: If we would choose S = Re - i * Im we would detect I+  !!
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Quadrature Detection in 1D

What happens if we create Iy magnetization first? 

Iy -i/2 * [I+ exp(-it) - I- exp(it)]

Both are again multiplied in the mixer

-i/2 * [ I+ exp(-it) - I- exp(it)] * [exp (ireft) + exp (-ireft)]

= -i/2 * {I+ [exp(-it) exp (ireft) + exp(-it) exp (-ireft)]

- I- [exp(it) exp (ireft) + exp(it) exp (-ireft)]}

= -i/2 * {I+ [exp(-i(-ref)t) + exp(-i(+ref)t)]

- I- [exp(+i(+ref)t) + exp(+i(-ref)t)]}

The low-pass filter leaves only two terms

-i/2 * {I+ exp(-it) - I- exp(+it)} = Re

cos (reft) = exp (ireft) + exp (-ireft)
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Quadrature Detection in 1D

The shifted reference results in slightly modified terms

-i/2 * [I+ exp(-it) - I- exp(it)] * i *[exp (ireft) - exp (-ireft)]

= ½ * {I+ [exp(-it) exp (ireft) - exp(-it) exp (-ireft)]

- I- [exp(it) exp (ireft) - exp(it) exp (-ireft)]}

= ½ * {I+ [exp(-i(-ref)t) - exp(-i(+ref)t)]

- I- [exp(+i(+ref)t) - exp(+i(-ref)t)]}

The low-pass filter again leaves only two terms

½ * {I+ exp(-it) + I- exp(+it)} = Im

cos (reft + /2) = i exp (ireft) – i exp (-ireft)
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Quadrature Detection in 1D

Both channels are again combined to form a complex number

S = Re + i * Im

-i/2 * [I+ exp(-it) - I- exp(+it)]

+ i/2 * [I+ exp(-it) + I- exp(+it)]

= i * I- exp(+it)

= I- exp(+i(+/2t)

We have a phase shift by 90°, but again this corresponds to coherence order (-1) 

90
rec

we detect 

coherence order 

(-1) 

i exp(it) = exp(+i(+/2t
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Quadrature Detection in 1D

We have seen that by shifting the phase of the original signal (e.g. by 

shifting the pulse by that phase) we get a phase shift in the resulting 

signal.

But they were obtained via the two phase shifted reference signals which 

were combined to a complex signal.

Those can then by easily manipulated by simple data processing operations 

and we will do one of those now that we will need later when we think 

about echo/anti-echo processing.

Ix I- exp(+i(t)

Iy I- exp(+i(+/2t)
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Quadrature Detection in 1D
We switch the real and the imaginary part and change the sign of the real part

We take the result of the Iy magnetization and use that

Instead of

S = Re + i * Im =

-i/2 * [I+ exp(-it) - I- exp(+it)] + i/2 * [I+ exp(-it) + I- exp(+it)]

= I- exp(+i(+/2t)

we have

S = -i * Re + Im =

-½ * [I+ exp(-it) - I- exp(+it)] + ½ * [I+ exp(-it) + I- exp(+it)]

= I- exp(+it)

This data manipulation results in the same signal as the one resulting from Ix !!

Re = -i/2 * {I+ exp(-it) - I- exp(+it)} Im = ½ * {I+ exp(-it) + I- exp(+it)}



Pulses and coherence levels
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Pulses and coherence levels

p

picture used in 
pulse sequences

An equally important tool of pulse sequences as delays are 

obviously the pulses, i.e. irradiation of radio waves with a certain 

frequency, power and phase
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Pulses and coherence levels

z

y x

In the rotating 

frame commonly 

used in NMR the 

oscillation 

translates into a 

static field
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Pulses and coherence levels

B1 from x
x

y
z

B1 from y

x

y
z

The phase of the 

signal thus translates 

into the direction of 

the B1-field: the 

phase of the pulse !

convention :  = 0 means x-pulse
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Pulses and coherence levels

Some simple calculations can show the effect of the phase of pulses.
90° IxIz -Iy

90° IyIz Ix

more general: changing the pulse phase is also a z-rotation !
90° IIz Ix sin  Iy cos 

Now lets see the effect of a phase shift in a simple spin echo
The phase of this 180°

pulse is changed by 90°
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Pulses and coherence levels

Ix Ix cos + Iy sin
Iz Ix Ix cos - Iy sin

Iz Ix cos cos + Iy cos sin - Iy cos sin + Ix sin sin = Ix

Ix Ix cos + Iy sin
Iz Iy - Ix cos + Iy sin

Iz -Ix cos cos - Iy cos sin + Iy cos sin - Ix sin sin = -Ix

a 90° phase shift  in a 180°-pulse changes the sign of refocussed magnetization !!
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Pulses and coherence levels

The result is obviously the same when we use the spherical operators

Ix

Iz

Ix = ½ (I+ + I-) 
Iz ½ [I+ exp (-i) + I- exp (+i)] 

½ [(Ix - iIy) exp (-i) + (Ix + iIy) exp (+i)] 

= ½ [(Ix+ iIy) exp (-i) + (Ix- iIy) exp (+i)] 

= ½ [I- exp (-i) + I+ exp (+i)] 

½ [I- exp (-i) exp (+i) + I+ exp (+i) exp (-i) ] = Ix

Iy

Iz

½ [(-Ix+ iIy) exp (-i) + (-Ix- iIy) exp (+i)] 

= ½ [-I- exp (-i) - I+ exp (+i)] 

½ [-I- exp (-i) exp (+i) - I+ exp (+i) exp (-i) ] = - Ix

The switching between the

representations can

complicate calculations !!
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Pulses and coherence levels

Now lets look what 180° pulses do to coherences in the spherical representation

IxI+ = (Ix + iIy) (Ix - iIy) = I-
IxI- = (Ix - iIy) (Ix + iIy) = I+

IyI+ = (Ix + iIy) (-Ix + iIy) = - I-
IyI- = (Ix - iIy) (-Ix - iIy) = - I+

IxI+ I- = (Ix + iIy) (Ix - iIy) (Ix - iIy)(Ix + iIy) = I- I+

IyI+ I- = (Ix + iIy) (Ix - iIy) (-Ix + iIy)(-Ix - iIy) = I- I+

IxI+ I+ = (Ix + iIy) (Ix + iIy) (Ix - iIy)(Ix - iIy) = I- I-

IyI+ I+ = (Ix + iIy) (Ix + iIy) (-Ix + iIy)(-Ix + iIy) = I- I-

We see that a 180° pulse changes the sign of the coherence order, but a 90°

phase shift of the pulse changes the sign of the coherence only for SQC.

It seems obvious that this can be utilized to separate the coherences which 

is exactly what is done using a phase cycle ! 

ZQC

DQC 
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Pulses and coherence levels

To depict what is going on coherence transfer pathway diagrams are used
90

Iz Ix = 1/2 (I+ + I-) 
90-y

0
-1
-2

2
1 Removed by quadrature detection

90

0
-1
-2

2
1

90

3

-3

While the first 90° pulse can only create 

coherences of order 1 and -1 (in case of a 

-pulse also 0 is left) all subsequent 90°

pulses create all orders of coherence, 

the upper limit is the number of spins 

that couple with each other. That’s one 

reason why we need phase cycling !!
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Pulses and coherence levels

180° pulses are different in that respect, as we have seen they only 

invert the order of coherence.

This is only true, however, if they are perfect 180° pulses. Those 

are difficult to achieve and thus a lot of phase cycling or gradients 

are applied to 180° pulses.

180

0
-1
-2

2
1

180

0
-1
-2

2
1

180

0
-1
-2

2
1

Sign changes are not depicted, they will show up later in calculations



Phase cycling
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Phase Cycling

In almost all NMR experiments the pulse sequence does not only 

create desirable types of magnetization but also various kinds of 

unwanted ones. To get the spectrum that we want we thus have to 

select the magnetization we want and suppress all other types.

We will later learn that gradients are a good way to do that but 

one procedure that is used in all NMR pulse sequences is phase 

cycling. In most experiments it is necessary to record the FID 

several times to obtain a sufficient signal-to-noise ratio. Using a 

phase cycle means that we vary the phase of one or several pulses 

in a systematic manner to select the signals we want. This in turn 

then makes a certain number of repetitions necessary to complete 

a full phase cycle.
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Phase Cycling

One example is the HMQC experiment

1H

nX



Decoupling



90x

901

180

90x= 1/2J

t1/2 t1/2

If this experiment is recorded using a sample with 13C in natural 

abundance, 99% of the 1H nuclei will create undesirable signals 

that are present as stripes parallel to F1 unless something is done 

to suppress them.
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Phase Cycling

Another example is the difference between NOESY and DQF-COSY

The sequences are very similar but need to produce quite different results

901 902 903
recmt1

901 902 903
rect1 

0
-1
-2

2
1

0
-1
-2

2
1
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Phase Cycling

All phase cycles work by adding up the desired signals and 

subtracting out the undesired ones. That means that they depend 

on the stability of the equipment used and will have more 

problems if strong, sharp signals need to be suppressed.

Many phase cycles, in particular in heteronuclear experiments and 

also triple resonance experiments are simple subtraction schemes.

For more complex phase cycles one has to calculate the coherence 

order transfer efficiency for which some quite straightforward 

rules have been established. The optimal suppression of the 

undesired pathways is more complex.

M. Levitt, “Spin Dynamics”, Appendix 17.10

L. Mitschang et al. J. Chem. Phys. 102, 3089-3098 (1995)
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Phase Cycling

A first “real” phasecycle can be seen in a 1D-HMQC type experiment

1H

nX



Decoupling



90x

901

180x

90x

1 = x, -x rec = +, -

rec

90 HxHz -Hy
JHX 2Hx Xz

= 1/2J

protons not bound to X:

1: 1 = x Hy

2: 1 = -x Hy

1 – 2 = 0

90 Xx1: 2Hx Xz - 2Hx Xy

90 X-x2: 2Hx Xz + 2Hx Xy
} 1 - 2 = 2 Hy

JHX
- Hy

+ Hy
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Phase Cycling

1H

15N

Entkopplung

13CO

Entk.

13C

In more complex experiments like the HN(CO)CA the idea remains the same:

N

CO

C

N = x, -x
CO = x, x, -x, -x
C = x, x, x, x, -x, -x, -x, -x } rec = x, -x, -x, x, -x, x, x, -x

rec
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Phase Cycling
If we want to go beyond simple subtractions we have to use some recipes.

We have to choose the coherence order pathway that represents the desired 

signals, this will dictate the coherence order changes p that we need to 

accomplish. For a NOESY we thus need the following pathways: 

901 902 903
recmt1

Remeber:

we detect 

coherence order 

(-1) 

0 +1
-1

-10
p = +1

p = +1

p = -1

p = -1

p = -1

It is important to note that we select changes in coherence order, not 
the coherence order itself !!

0
-1
-2

2
1
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Phase Cycling

The variable we have is the phase increment we use for each of the pulses.

We have to go full circle, i.e. we divide 360° by the number of phase cycle 

steps we want to execute. If we want to do 4 steps then the phase cycle will 

be 0°, 90°, 180°, 270°. In a (Bruker) pulse program steps of 90° are pre-

defined for simplicity, such a phase cycle would then be written as:

phx = 0 1 2 3

If we have 6 steps we end up with steps of 60° and this would be written as:

phx = (360) 0 60 120 180 240 300 or phx = (6) 0 1 2 3 4 5
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Phase Cycling

The number of steps that we need to choose depends on the difference
between coherence order changes that we want to select. This can be thought 

of as a mask that we use on the coherence order changes. If we cycle  the 

second pulse in steps of 120° we select every third coherence order change. 

90

0
-1
-2

2
1

90

3

-3

90

0
-1
-2

2
1

90

3

-3

Note that instead of 1 to 3,0 and -3 a jump to 2, -1 and -4 would also be 

possible but would require another receiver phase (see below). Only the 

difference between the resulting levels is determined by the phase change.

90

0
-1
-2

2
1

90

3

-3
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Phase Cycling

Which of the coherence order pathways finds its way to the receiver 

depends on the phase cycle not only of the various pulses in the pulse 

sequence but also on the receiver phase. Only if all phase changes combined 

with the desired coherence order changes add up signal will be obtained.

The formula to calculate the desired receiver phase is:

Were i is the number of the phasecycle step.

That means for every pulse we multiply the desired change in coherence order 

with the change in phase and then all products are added up, multiplied by (-1) 

to yield the receiver phase. 

i
rec = - pi * i



Peter Schmieder
FMP

56/114

Phase cycling, Gradients and Quadrature-Detection
G-NMR-School 2020

Phase Cycling

In case of the NOESY we obtain the following phase cycle: We vary 3 in 

steps of 90° which will give us coherence order 0, ± 4 , ± 8 … if we choose 

the receiver properly so that a change of coherence order by -1 is 

accomplished in the last step. We leave 1 and 2 at 0 since the creation of 

coherence orders of 4 or 8 (and changes by -5 or -7) is rather unlikely (see 

below). They thus can be ignored in the calculation since they always yield 

0. So our phase cycle is 3 = 0, 1, 2, 3, what is the receiver phase ?

901 902 903
recmt1

p = -10
-1
-2

2
1
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Phase Cycling

3 = 0, 1, 2, 3 and p = -1

901 902 903
recmt1

i
rec = - pi * i

1 2 3 Σ pi * i rec

1 0 0 0 0 0
2 0 0 1 -1 1
3 0 0 2 -2 2
4 0 0 3 -3 3

p = -10
-1
-2

2
1
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Phase Cycling

3 = 0, 1, 2, 3 and p = -5

901 902 903
recmt1

i
rec = - pi * i

1 2 3 Σ pi * i rec

1 0 0 0 0 0
2 0 0 1 -5 1
3 0 0 2 -10 2
4 0 0 3 -15 3

p = -5
0
-1
-2

2
1

3

-3
-4

4
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Phase Cycling

901 902 903
rect1 

3 = 0, 1, 2, 3

p = -3 and +1
p = +1

Mask for +2 and -2 =>  = 90°

p = -3

1 2 3 Σ pi * i
p = +1

Σ pi * i
p = -3

„rec“
p = +1

„rec“
p = -3

rec

1 0 0 0 0 0 0 0 0
2 0 0 1 1 -3 -1 3 3
3 0 0 2 2 -6 -2 6 2
4 0 0 3 3 -9 -3 9 1

Using „modulo 4“ we obtain identical phasecycles for both pathways

DQF-COSY

0
-1
-2

2
1



Peter Schmieder
FMP

60/114

Phase cycling, Gradients and Quadrature-Detection
G-NMR-School 2020

Phase Cycling

What if we add a WATERGATE water supression to the NOESY ?

901 902 903
recmt1

1 2 3 4 Σ pi * i „rec“ rec

1 0 0 0 0 0 0 0
2 0 0 1 0 1 -1 3
3 0 0 2 0 2 -2 2
4 0 0 3 0 3 -3 1

180

p = +1 !!

Since all phases are relative angles rec = 1, 0, 3, 2 will work as well !! 

0
-1
-2

2
1
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Phase Cycling

Another important phase cycle is the “Exorcycle” that is used to correct 

180° pulses that are applied to transverse magnetization.

90 1801 rec

p = ± 2

 - t1/2
90

 + t1/2

1  pi * i
p = +2

 pi * i
p = -2

„rec“
p = +2

„rec“
p = -2

rec

1 0 0 0 0 0 0
2 1 2 -2 -2 2 2
3 2 4 -4 -4 4 0
4 3 6 -6 -6 6 2

0
-1
-2

2
1



Gradients and coherence levels
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Gradients and coherence levels

Another powerful tool for NMR experiments are field gradients

sample

coil

main field

field gradient

z

While usually the homogeneity is 

kept as good and constant as 

possible, gradients are a way to 

change the magnetic field in a 

geometrically controlled manner.

The Lamour frequency is then not 

the same for all molecules in the 

sample but spatially dependent:
B = (1 + z) B0

 = - B = - (1 + z) B0
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Gradients and coherence levels

Assuming a length of the coil of 2 cm and a typical gradient of 50 Gs/cm 

then we have a difference of B = 10 mT ( 1 Gs = 0.1 mT) between the 

upper and lower end of the sample.

The gyromagnetic ratio for the protons (1H) is  =26.75*107 rad/sT.

main field field gradient

z At a magnetic field of 14.1 T we 

thus obtain a frequency of

 = /2 = B/2 = 600 MHz

For a B = 10 mT we thus obtain a 

 = 425 kHz, which corresponds 

to ~700 ppm

(the minus is left out for clarity)

 = 700 ppm
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Gradients and coherence levels
Despite the spacial differences field gradients are in essence only delays

1H 

Gz

But the chemical shift is 

dependent on the z-coordinate

Bz = B0 + Gz

(Gz is the gradient field)

And since  z = Bz = (B0 + Gz) = B0 + Gz = 0 + (z) 

Ix = ½ (I+ + I-) Izz ½ [I+ exp (-iz) + I- exp (+iz)] 

If we apply that to what we already know we obtain

= ½ [I+ exp (-i(0 + (z))) + I- exp (+ i(0 + (z)) )] 
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Gradients and coherence levels

That can be separated in a spatially dependent and an independent part

= ½ I+ exp (- i0) exp (- i(z))
+ ½ I- exp (+ i0) exp (+ i(z)) 

The additional phase created by the gradient has opposite sign for I+

and I-, and since (z) = Gz it does not only depend on the gradient 

strength but also on the gyromagnetic ratio of the nuclei, the shift 

will depend on the type of nucleus.

We have seen that a gradient of 50 Gs/cm creates a difference of 

425 kHz for 1H spins, consequently the difference will be only 107 

kHz for 13C nuclei
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Gradients and coherence levels

The additional shift will be twice as large for DQC then for SQC, 

ZQC will not be affected at all, they are insensitive to gradients. 

IzzI1+I2+

I1+exp(-iz) I2+ exp(-iz) = I1+I2+ exp(-i(1 +(z)) ) exp(-i(2 +(z)) )

= I1+I2+ exp(-i[1+2]) exp (- i2(z))

IzzI1+I2-

I1+exp(-iz) I2- exp(+iz) = I1+I2- exp(-i(1 +(z)) ) exp(+i(2 +(z)) )

= I1+I2- exp(-i[1-2])

exp (-i[(z)-(z)]) = 1

This is the coherence order p !!

Here is the coherence
order p = 0 !
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Gradients and coherence levels
The calculation is a bit more involved for mixed MQC: 

heteronuclear ZQC are not insensitive to gradients !

IzzH+C+

H+exp(-iHz) C+ exp(-iCz) = H+C+ exp(-i(H + H(z)) ) exp(-i(C + C(z)) )

= H+C+ exp(-i[H + C]) exp (- i[H (z) + C (z)])
= H+C+ exp(-i[H + C]) exp (- i[H G + C G])
= H+C+ exp(-i[H + C]) exp (- i[H + C ] G)

IzzH+C-

H+exp(-iz) C- exp(+iz) = H+C- exp(-i(H + H (z)) ) exp(+i(C + C (z)) )

= H+C- exp(-i[H - C]) exp (- i[H(z) – C (z)])
= H+C- exp(-i[H - C]) exp (- i[H - C ] G)
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Gradients and coherence levels

z

Since the chemical shift evolution during the 

delay is spatially dependent, a single 

gradient will destroy magnetization. 

However, the changes in the magnetic field 

are not random, the signal can thus be 

recovered by appropriate other gradients.

Gradients can be applied in both +z and –z,

i.e. in both directions of the magnetic field.

(Given the proper equipment one can also 

apply x and y gradients, but those are rarely 

used in high resolution NMR these days)
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Gradients and coherence levels
To revers the effect of a gradient there are several ways

180° pulses reverse the effect of chemical shift and thus also that of gradients.

Another way of looking at it: the products of coherence order and gradient 

strength for all gradients have to add up to  0 !

p1 * G1 + p2 * G2 = 1 * 1 + -1 * 1 = 0 (if G1 = G2) 

1H

Gz

/2

1             :     1

/2

0
-1
-2

2
1

G1 G2

p1 = 1
p2 = -1
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Gradients and coherence levels

That is why two gradients 

“clean up” a 180° pulse and why 

WATERRGATE works so well 

for suppression of water signals

nX

Gz

/2/2

0
-1
-2

2
1

p1 = +/- n p2 = -/+ n

1H
90

90H2O 

180
90H2O

Gz
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Gradients and coherence levels
Instead of changing the sign of the coherence order we can 

change that of the gradient

p1 * G1 + p2 * G2 = -1 * 1 + -1 * -1 = 0

1H

Gz

/2

1             :     -1

/2

0
-1
-2

2
1

G1

G2

p1 = -1 p2 = -1
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Gradients and coherence levels

Here we use two opposite gradients to reduce the effect on the overall stability 

of the setup, but use the 180° pulse to still create a strong gradient

p1 * G1 + p2 * G2 = 1 * 1 + -1 * -1 = 2 (if G1 = -G2)

These bipolar gradients are used e.g. in DOSY experiments

1H

Gz

/2

1             :     -1

/2

0
-1
-2

2
1

G1

G2

p1 = 1
p2 = -1
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Gradients and coherence levels
Now lets look at a “real” experiment: an HMBC with gradient selection

1H

nX

 

90

90

180

90180



Gz

t1/2 t1/2

0
-1
-2

2
1 pH = -1

0
-1
-2

2
1

1H

nX

pXa1 = +1

pXa2 = -1pXb1 = -1

pXb2 = +1

G1 G2
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Gradients and coherence levels

Gradients, coherence levels and gyromagnetic ratio still have to add up to 0.

There are two pathways for the X-nucleus (we will learn later why), since 

gradients are sensitive to the sign of the coherence level we will not be able 

to select them simultaneously.

Gz

0
-1
-2

2
1 pH = -1

0
-1
-2

2
1

1H

nX

pXa1 = +1

pXa2 = -1pXb1 = -1

pXb2 = +1

G1 G2
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Gradients and coherence levels

Pathway a:

(pH * H + pXa1 * X) * G1 + (pH * H + pXa2 * X) * G2 = 0

(-H + X) * G1 + (-H - X) * G2 = 0

(-H + X) * G1 = (H + X) * G2 

n = X / H

G2 =
(H + X)

(-H + X)
* G1 =

(H + n * H)
(-H + n * H)

(1 + n)
(1 - n)

* G1 = - * G1

Gz

0
-1
-2

2
1 pH = -1

0
-1
-2

2
1

1H

nX

pXa1 = +1

pXa2 = -1pXb1 = -1

pXb2 = +1

G1 G2
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Gradients and coherence levels

Pathway b:

(pH * H + pXb1 * X) * G1 + (pH * H + pXb2 * X) * G2 = 0

(-H - X) * G1 + (-H + X) * G2 = 0

(-H - X) * G1 = (H - X) * G2 
G2 =

(H - X)

(-H - X)
* G1 =

(H - n * H)
(-H - n * H)

(1 - n)
(1 + n)

* G1 = - * G1

Gz

0
-1
-2

2
1 pH = -1

0
-1
-2

2
1

1H

nX

pXa1 = +1

pXa2 = -1pXb1 = -1

pXb2 = +1

G1 G2

n = X / H

(1 + n)
(1 - n)

- * G1

a vs. b
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This is exactly what you will find in pulse programs, only 

written a little different.

"cnst30=(1-sfo2/sfo1)/(1+sfo2/sfo1)"

define list<gradient> EA1 = { 1.000 -cnst30}
define list<gradient> EA2 = { -cnst30 1.000}

(p3 ph4):f2
d0
(p2 ph2)
d0
p16:gp1*EA1
d16
(p24:sp7 ph5):f2
DELTA4
p16:gp1*EA2
d16 pl2:f2
(p3 ph5):f2
d20
(p14:sp3 ph1):f2
d20
4u BLKGRAD
go=2 ph31

a: G2 = - G1 
(1 + n)
(1 - n)

n = X / H = sfo2/sfo1  

G1 = - G2 
(1 + n)
(1 - n)

b: G2 = - G1 
(1 - n)
(1 + n)
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Gradients and coherence levels

An advantage of gradients compared to phase cycling is that the 

selection is accomplished with a single scan, no addition or subtraction 

of signals is necessary. So there are no subtraction artefacts and the 

receiver gain can be adjusted to the desired signal and does not have 

to accommodate signals that disappear later.

0
-1
-2

2
1

We have seen already that gradients do NOT 

affect coherence order 0:
p * G = 0 for p = 0 independent of G !!

Since ZQC and z-magnetization both have 

coherence order 0, they can not be 

separated or suppressed by gradients

(nor separated by phase cycling).

Two more things:



Quadrature detection in 2D
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Quadrature Detection in 2D

s(t) = exp (i0t) exp (-t/T2) S() = A() + i D()

The problem of sign discrimination when putting the carrier in the center of 

the spectrum occurs in every dimension of an nD-spectrum.

In case of 1D-NMR we have seen that we can solve the problem by obtaining a 

complex signal i.e. by selecting only one coherence level.

901 902
rect1

We have seen now that we can 

select one coherence level in the 

indirect dimension of an nD using 

either gradients or a phase 

cycle, so it should be easy to 

obtain a complex signal.

“Service-COSY”

2 = 0, 1, 2, 3
rec = 0, 2, 0, 2



Peter Schmieder
FMP

82/114

Phase cycling, Gradients and Quadrature-Detection
G-NMR-School 2020

Quadrature Detection in 2D

s(t1,t2) = exp (iAt1) exp (-t1/T2) exp (iBt2) exp (-t2/T2)

S(t1,2) = exp (iAt1) exp (-t1/T2) [A(2) + i D(2)]

The signal we obtain is then:

After the first FT we get:

And the second FT yields:

S(1,2) = [A(1) + i D(1)] [A(2) + i D(2)]

S(1,2) = [A(1) A(2) - D(1) D(2)] + i [A(1) D(2) + D(1) A(2)]

We will only look at the real part of the spectrum and as it turns out the 

frequency discrimination worked but we have dispersive components in the 

signal ! We need a magnitude calculation and loose resolution.
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Quadrature Detection in 2D

If we now take only the real part and combine both to yield a complex dataset 

we get what we want:

SC(t1, 2) = cos(At1) exp (-t1/T2) [A(2) + i D(2)]

SS(t1, 2) = sin(At1) exp (-t1/T2) [A(2) + i D(2)]

The solution is to record and store the real and imaginary part in the indirect 

dimension separately as cosine and sine component. After the first FT we get:

S(t1, 2) = [cos(At1) + i sin(At1)] exp (-t1/T2) A(2)

S(t1, 2) = exp (iAt1) exp (-t1/T2) A(2)

S(1,2) = [A(1) + i D(1)] A(2)

S(1,2) = A(1) A(2) + i D(1) A(2)

Now the real part has pure absorption phase, this is Ruben-States-Haberkorn
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Quadrature Detection in 2D

901 902
rect1 This means that we allow two 

coherence levels (2 needs to 

be set properly). 

In addition, we have to manipulate 1, to obtain a cosine and a sine signal: 

90° Ix

1 = x, 2 = x

-IyIz - Iy cost + Ix sint
Iz 90° Ix - Iz cost + Ix sint

90° Iy

1 = y, 2 = x

IxIz Ix cost + Iy sint
Iz 90° Ix Ix cost + Iz sint
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Quadrature Detection in 2D

“States“                       ”States-TPPI”                    “TPPI”

1 t1 rec

x 0 x
y 0 x
x t x
y t x

1 t1 rec

x 0 x
y 0 x
-x t -x
-y t -x

1 t1 rec

x 0 x
y t/2 x
-x t x
-y 3t/2 x

There are several established ways to do it, TPPI is the 2D-

variant of the Redfield-trick.

They all achieve the same goal but they differ in the way the 

affect axial peaks and the position of peaks outside the 

frequency range given by the Nyquist theorem. 

“Ruben-States-Haberkorn“
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Quadrature Detection in 2D

By collecting a sine in first FID and cosine in the second, the other 

part does not contribute to the signal and is “wasted”.

90° Ix

1 = x, 2 = x

-IyIz - Iy cost + Ix sint
Iz 90° Ix - Iz cost + Ix sint

90° Iy

1 = y, 2 = x

IxIz Ix cost + Iy sint
Iz 90° Ix Ix cost + Iz sint

To recover that loss a scheme was designed that obtained the name 

“sensitivity enhancement”, even so the length of the sequence prevents 

an actual enhancement in case of faster relaxing molecules. One part 

of the signal is stored and the other recovered during the sequence.
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Quadrature Detection in 2D

1H 1

nX

t1/2t1/2

90x 90y

90x

90x

90x/-x

90y

90y

1 112 2

Decoupling

90x

- NyHz cost1 + NxHz sint1 NzHy cost1 + NxHy sint1

Hx cost1 + NxHy sint1 Hz cost1 - NzHy sint1

+-

+- +-

Hz cost1 + Hx sint1+- Hy cost1 + Hx sint1+-

The idea is to collect two FIDs with a slightly modified phase cycle that will 

allow both components to reach the receiver, albeit with different sign, and 

store them seperately for further manipulation
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Quadrature Detection in 2D

Hy cost1 + Hx sint1+-

Now we take the sum and the difference of the both FIDs we have collected

sum 2 Hx sint1

difference 2 Hy cost1

We have calculated before that we can convert Hy into Hx by taking the FID 

resulting from that magnetization and switching real and imaginary part and 

changing the sign of the real part.

We thus obtain the two signals:

Which is exactly the same as if we would have done States, except we have a 

factor of 2 in there, which will lead to the enhancement.

2 Hx cost1                2 Hx sint1
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Quadrature Detection in 2D

A related situation occurs when using gradients for coherence selection. 

We have seen that we can only select one pathway but that we need two. 

The solution has already been presented in the previous section we can use 

different signs for the gradients and collect both pathways. Since they 

are called echo and anti-echo so is the quadrature procedure.

1H

nX

 

90x

90x

180

90x180



Gz

t1/2 t1/2

G1 G2
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Quadrature Detection in 2D

In echo/anti-echo we collect both X+ and X-. Since these contain

[Xx + Xy]  as well as [Xx - Xy] and since exp(± xt) contains a sine and a 

cosine, manipulation of the magnetization is possible to yield the same 

situation as with sensitivity enhancement:

Hx cos(Xt1) ± Hy sin(xt1)

Again forming the sum and the difference and manipulating the real 

and imaginary part somewhat yields data to be processed like States.

On Bruker spectrometers you 

actually choose the type of 

quadrature detection and the 

software will do it for you
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Quadrature Detection in 2D

We heard already that the different schemes for quadrature 

detection differ in the way they handle axial peaks.

Axial peaks arise from magnetization that does not experience the 

phase shifts prior to the evolution time. These signals are treated 

differently by the various quadrature detection schemes. They do not 

“feel” changes in 1 and thus only experience the receiver phase.

1 t1 rec

x 0 x
y 0 x
x t x
y t x

If we use States the axial peaks 

will be detected as what they are: 

peaks at zero frequency which is the 

center of the spectrum
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Quadrature Detection in 2D

1 t1 rec

x 0 x
y 0 x
-x t -x
-y t -x

1 t1 rec

x 0 x
y t/2 x
-x t x
-y 3t/2 x

In case of States-TPPI, the sign of the 

receiver is changed from point to point. 

Since the same is done for 1, the real 

signals do not differ from States. But the 

axial peaks a shifted by half the sweep 

width to the edge of the spectrum.

In case of TPPI, the sign of the receiver is 

not changed so the axial peaks stay in the 

center. But the real peaks are shifted and 

the processing moves the spectrum by half 

the sweep width so the axial peaks are 

again at the edge.
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Quadrature Detection in 2D

The effects that are observed 
regarding peaks outside the 
chosen spectral range result 
from the digitization of the 
signal prior to processing.

2t

fn = 1/(2t)

The Nyquist-theorem states that the 
highest frequency detectable with a sampling 

rate of t is

which means that we have to have three 
datapoints per period. Since we can 

distinguish the sign we have a spectral width

SW = 2 * fn = 1/t
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Quadrature Detection in 2D

fn + f fn fn - f
fnfn + f

If a frequency is higher than the Nyquist-Frequency it simply appears as if 

the frequency were lower since the digitizer can simply not distinguish the 

higher frequency from a lower one within the “Nyquist range”.
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Quadrature Detection in 2D

The sign of a frequency outside the Nyquist range is dependent on the 

type of sampling. If only a cosine signal is collected (TPPI, Redfield) then a 

signal is “folded”, i.e. F+F is replaced by F-F. If a complex signal is 

collected (States, States-TPPI, echo/antiecho), then the signal is 

“aliased”, i.e. F+F is replaced by (-(F-F))  

„complex“ data (States, States-TPPI, echo/antiecho)

„real“ data (TPPI, Redfield)
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Quadrature Detection in 2D

In summary all schemes yield in principle identical results, they 

differ, however, with respect to axial peak suppression and in the way 

peaks outside the spectral range are folded or aliased.

“States“                        ”States-TPPI”                            “TPPI”

aliased
peaks

aliased
peaks

folded
peaks



Z-Filter (ZQ-Suppression)
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Z-Filter (ZQ-Suppression)

We have already discussed that neither a gradient nor phase-cycling is 

capable of separating z-magnetization from ZQC and thus suppressing 

one of them. This is a problem in several types of spectra the most 

prominent one is the NOESY of small molecules. 

90x 90x 90x
recmt1

Gz

1H

For larger molecules ZQC relax quite fast and vanish on their own

This gradient helps but 
does not suppress ZQC !!



Peter Schmieder
FMP

99/114

Phase cycling, Gradients and Quadrature-Detection
G-NMR-School 2020

Z-Filter (ZQ-Suppression)

Why is that a problem ?

90 HxH1z -H1y
2Ht1 -H1y cos 2H1t1 + H1x sin 2H1t1 

JHHt1 -H1y cos 2H1t1 cos JHHt1 + 2H1x H2z cos 2H1t1 sin JHHt1

+ H1x sin 2H1t1 cos JHHt1 + 2H1y H2z sin 2H1t1 sin JHHt1

-H1z cos 2H1t1 cos JHHt1 - 2H1x H2y cos 2H1t1 sin JHHt1

+ H1x sin 2H1t1 cos JHHt1 - 2H1z H2y sin 2H1t1 sin JHHt1

90 Hx

This will yield the NOESY peaks

m , 90 Hx H1y cos 2H1t1 cos JHHt1 + H2y cos 2H1t1 cos JHHt1

t2 H1y cos 2H1t1 cos JHHt1cos 2H1t2 cos JHHt2

H2y cos 2H1t1 cos JHHt1cos 2H2t2 cos JHHt2

But this contains ZQCs !!

diagonal peak

cross peak
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Z-Filter (ZQ-Suppression)

2H1x H2y = 2 (½(H1+ + H1-) 1/2i (H2+ - H2-) = 1/2i [H1+H2+ + H1-H2+ - H1+H2- - H1-H2-]

= 1/2i [H1-H2+ - H1+H2-] = 1/2i [(H1x - i H1y) (H2x + i H2y) - (H1x + i H1y) (H2x - i H2y)]  
ZQC

= 1/2i [H1xH2x - i H1yH2x + i H1xH2y + H1yH2y  - H1xH2x - i H1yH2x + i H1xH2y - H1yH2y ]  

= H1xH2y - H1yH2x

90 Hx H1x H2z cos 2H1t1 sin JHHt1 - H1z H2x cos 2H1t1 sin JHHt1 

t2 H1y cos 2H1t1 sin JHHt1 cos 2H1t2 sin JHHt2

- H2y cos 2H1t1 sin JHHt1 cos 2H2t2 sin JHHt2

diagonal peak

cross peak

The position of the peaks are the same but the phase 

is different and they are antiphase peaks
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Z-Filter (ZQ-Suppression)

That leads to heavy distortions in the peaks (left spectrum) and prevents 

a reliable integration and thus distance determination, that would be 

possible with the spectrum on the right 
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Z-Filter (ZQ-Suppression)

But there is a difference that we can exploit:

H1z
m

H1z [{1+exp(-2m)} exp(-(-)m)] + H2z [{1-exp(-2m)} exp(-(-)m)] 

This is dependent on m but not as an oscillation !

1 2 3 4 5

0.2

0.4

0.6

0.8

1

peak 
amplitudes

diagonal

cross

/sm

c = 1 ns
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Z-Filter (ZQ-Suppression)

H1-H2+ - H1+H2-
m H1-H2+ exp(-i[2-1] m) - H1+H2- exp(-i[1-2] m)

Whereas this oscillates with m ! That means that we can achieve a cancelation 

of the signals from ZQCs if we vary the evolution of ZQCs and add up the 

result. There are two ways of doing that:

Random variation of m systematic movement of an 180° pulse 

90x 90x

m  X %
90x 90x

m + m

180x

m - m

If you want to be accurate with your mixing time then the second

solution is for you
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Z-Filter (ZQ-Suppression)

90x 90x

m + m

180x

m - m

But there is a potential problem: the NOESY should be executed with a 

phase cycle of 4, even if supported by gradients, maybe even 8 for 

suppression of central signals. If we now repeat every FID with a 

decent number of increments for m then we easily end up with 80 scans 

or more for every FID, which makes the experiment extremely lengthy

An impressive solution to that problem was designed in James Keelers

group and can be found here:

Angewandte Chemie Int. Ed. 42, 3938-3941 (2003)
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Z-Filter (ZQ-Suppression)

90x 90x

m

180ad

They use a combination of an adiabatic 180° pulse and a gradient to 

obtain a z-filter in one go:

To understand this we have to take a closer look at an adiabatic pulse, 

that is performing an adiabatic fast passage
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Z-Filter (ZQ-Suppression)

Here the offset of the pulse, i.e. the frequency with that it is 

executed, is changed over the length of the pulse, in a full adiabatic 

passage this is done from far off resonance at lower frequency to far 

off resonance at higher frequency (or vice versa). That influences the 

position of the effective field that is rotating the magnetization.
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Z-Filter (ZQ-Suppression)

The effective field is moving from the z-axis ( is dominating) towards 

the x,y-plane (B1 is dominating) and to  the –z-axis in the end ( is 

dominating again) . If this is done slowly enough the “adiabatic condition” 

is fulfilled and the magnetization, that is rotating around the effective 

field, is following that path.  
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Z-Filter (ZQ-Suppression)

This has two consequences:

The pulse can invert magnetization over 

a wide range of frequencies, since it 

starts far off resonance from the 

spectral range anyway.

And it does not hit all magnetization 

vectors at the same time as a 

conventional pulse does.

That means a typical adiabatic pulse 

like a smoothed chirp can invert a range 

a 60 kHz but it inverts the 

magnetization vectors over that range 

“one at a time”
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Gradients and coherence levels

sample

coil

main field

field gradient

z

We have already calculated what a 

gradient does to the sample volume:

We use a gradient of 5 G/cm, that 

means the frequencies at both ends 

of the sample differ by 40 kHz.

If we apply an adiabatic 180° pulse 

during that gradient it will still 

invert all spins but not all at the 

same time, the moment of inversion 

will depend on the position in the 

sample.  
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Z-Filter (ZQ-Suppression)

While the z-magnetization does not care about the inversion, the ZQCs do. 

The sample is split up in infinitesimal small slices by the gradient and in 

each the 180 pulse is doing its job at a different time. That means in each 

slice the ZQCs are refocussed to a different degree

90x 90x

+ ()z

180

- ()z m - 2

m

180

2()z

()z = 
()z = 0.75
()z = 0.5
()z = 0.25
()z = 0
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Z-Filter (ZQ-Suppression)

And while the z-magnetization remains as if there was no 180° pulse, the 

sum of all ZQCs will be zero, the ZQCs are cancelled without a cumbersome 

repetition of the experiments beyond the requirements of signal-to-noise.
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Z-Filter (ZQ-Suppression)

This can be used in a variety of experiments, for example:

90 90 90

t1

180

NOESY

90 90 90

t1

180a

TOCSY
DIPSI-2

180b
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Questions: schmieder@fmp-berlin.de

Scripts: schmieder.fmp-berlin.info/teaching.htm

„Further reading“:
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That‘s it


